The ImageJ ecosystem: An open platform for biomedical image analysis.

نویسندگان

  • Johannes Schindelin
  • Curtis T Rueden
  • Mark C Hiner
  • Kevin W Eliceiri
چکیده

Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated detection and analysis of Ca(2+) sparks in x-y image stacks using a thresholding algorithm implemented within the open-source image analysis platform ImageJ.

Previous studies have used analysis of Ca(2+) sparks extensively to investigate both normal and pathological Ca(2+) regulation in cardiac myocytes. The great majority of these studies used line-scan confocal imaging. In part, this is because the development of open-source software for automatic detection of Ca(2+) sparks in line-scan images has greatly simplified data analysis. A disadvantage o...

متن کامل

FunImageJ: a Lisp framework for scientific image processing

Summary FunImageJ is a Lisp framework for scientific image processing built upon the ImageJ software ecosystem. The framework provides a natural functional-style for programming, while accounting for the performance requirements necessary in big data processing commonly encountered in biological image analysis. Availability and implementation Freely available plugin to Fiji (http://fiji.sc/#d...

متن کامل

MREJ: MRE elasticity reconstruction on ImageJ

Magnetic resonance elastography (MRE) is a promising method for health evaluation and disease diagnosis. It makes use of elastic waves as a virtual probe to quantify soft tissue elasticity. The wave actuator, imaging modality and elasticity interpreter are all essential components for an MRE system. Efforts have been made to develop more effective actuating mechanisms, imaging protocols and rec...

متن کامل

Image Processing with ImageJ

tronomy. It is common practice for manufacturers of image acquisition devices to include dedicated image processing software, but these programs are usually not very flexible and/or do not allow more complex image manipulations. Image processing programs also are available by themselves. ImageJ holds a unique position because T he advances of the medical and biological sciences over recent year...

متن کامل

AFM/CLSM data visualization and comparison using an open-source toolkit.

There is a vast difference in the traditional presentation of AFM data and confocal data. AFM data are presented as surface contours while confocal data are usually visualized using either surface- or volume-rendering techniques. Finding a common meaningful visualization platform is not an easy task. AFM and CLSM technologies are complementary and are more frequently being used to image common ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular reproduction and development

دوره 82 7-8  شماره 

صفحات  -

تاریخ انتشار 2015